STRONG COMPOSITIONALITY

LAszLO KALMAN

THEORETICAL LINGUISTICS PROGRAMME, BUDAPEST UNIVERsITY (ELTE)
c/o RESEARCH INSTITUTE FOR LiNGuisTics, HAS, Room 119
BupapesT 1., P.O. Box 19. H-1250 HUNGARY
E-MAIL: kalman@nytud.hu

WORKING PAPERS IN THE THEORY OF GRAMMAR, VoL. 2, No. 3
SUPPORTED BY THE HUNGARIAN NATIONAL RESEARCH FunDp (OTKA)

THEORETICAL LINGUISTICS PROGRAMME, BUDAPEST UNIVERSITY (ELTE)
RESEARCH INSTITUTE FOR LINGUISTICS, HUNGARIAN ACADEMY OF SCIENCES

BuparesT 1., P.O. Box 19. H-1250 HUNGARY
TELEPHONE: (36-1) 175 8285; Fax: (36-1) 212 2050

0. Introduction

This paper addresses the much-debated issue of the Principle of Compositionality,
the exact content, the formulation and the validity of which has been questioned
so often. In its weakest form, it requires the interpretation of natural-language
utterances to assign meanings in a more or less systematic manner. In Montague’s
(1970) classical version, it stipulates a perfect parallelism between semantic and
syntactic structures. Its validity has been questioned on the basis of the influence of
the (utterance-external and utterance-internal) context on interpretation. Finally,
it also has acquired an intuitive meaning, which roughly corresponds to minimizing
idiomaticity.

In this paper, I will argue that the principle of compositionality has several
weak points, which make its actual content far weaker than its intuitive inter-
pretation. As a matter of fact, the principle is almost vacuous in its popular
form. Section 1 introduces the principle and explains what its weak points are.
I conclude that Compositionality must be strengthened if it is to act as a more
substantial constraint on interpretation. I will also explain how the intuitive idea
that idioms are exceptions to Compositionality can be made more technical.

Section 2 presents a language that is prototypically non-compositional in the
intuitive sense. The language in question is the command language of the Unix
operating system. After explaining the basics of the language (Section 2.1), I
will argue that it is no accident that users have difficulty mastering it. Although
its interpretation is perfectly compatible with the popular form of the principle
of compositionality, it is fundamentally different from natural languages in ways
obviously related to the intuitive concept of compositionality as described in the
first section (Section 2.2).

Section 3 is the core of the paper. I propose two additional constraints
on the interpretation of natural-language expressions: Independence says that
the meanings assigned to sub-expressions in an expression must not depend on
each other’s shapes (Section 3.1); and Additivity prohibits operations combin-
ing meanings from destructively modify any previously assigned meanings (Sec-
tion 3.2). I also sketch an interpretation mechanism for Unix commands that
respects Strong Compositionality, i.e., the conjunction of Compositionality, In-
dependence and Additivity. Section 3.2.1 deals with the particular problem of
treating default mechanisms without violating Additivity.

Section 4 intends to draw some consequences of Strong Compositionality for
the semantics of natural languages. In particular, in Section 4.1 I argue that
the mathematical metaphor of ‘incomplete’ expressions seen as functors must be
abandoned in terms of the principle of additivity. Instead, I will propose to aban-
don the concept of ‘semantic incompleteness’ altogether, so that the combination
of meanings yields just more complete meanings from less complete ones. Sec-
tion 4.2 is about the expression-internal interactions of meanings. I argue that

such interactions are not excluded by Independence (which only bans interactions
in terms of formal properties), nor by Additivity (inasmuch as the interactions
are not destructive). I sketch possible analyses of phenomena in which such in-
teractions are involved. In particular, I argue that the meanings of adjectives and
nouns in ‘intersective modification’ constructs are ‘brought into harmony’ in a
non-destructive way before the ‘intersection’ operation is performed, and this type
of analyses can perhaps be extended to other types of complex expressions, such
as preposition/noun and verb/direct object constructs. In conclusion, I suggest
that, by relying on the same mechanisms as we use for treating default values, the
analyses are compatible with Strong Compositionality. Finally, in Section 4.3,
I introduce an operation called coalesced intersection, which can be used instead
of function application for combining meanings. This section is about the possi-
ble techniques that allow us to treat the meanings of syntactically complete and
incomplete expressions on a pair, without type theoretic distinctions.

1. Compositionality

It is hard to imagine a language for which no compositional interpretation exists
under the usual definition of compositionality:!
(1) Compositionality
The meaning of a complex expression is a function of the meanings of its
sub-expressions and of the way in which they are put together.

It seems obvious that, for any complex expression whatsoever, as long as we can
determine ‘the way in which its constituents are put together’, this criterion can
be satisfied.? The definition in (1) has at least three loose points that are jointly
responsible for this:?
(2) Weak points of compositionality
(1) the function used for combining the meanings of the sub-expressions
can be any function at all;
(ii) there is no a priori limitation on what objects meanings can be;
(iii) in the definition above, there are no constraints as to how the meanings
should be assigned to the various sub-expressions.

Let me now elaborate on each point in (2i-iii) above.

Ad (2i): There are few things a function cannot do. In particular, we can
define functions pointwise so that their behaviour cannot be considered uniform in

! For the variants of this definition and their history, see Partee (1984) and
Szabé (1995).
2 Cf. Partee (1984).

3 Partee (1984) raises the same problems.

3

any intuitive sense. That is, although the intuitive content of compositionality im-
plies that, under normal circumstances, the same constituent in the same syntactic
role will play the same semantic role, this is not guaranteed by the definition in (1).
For example, a word like yesterday could easily mean ‘yesterday’ in some sentences
and ‘accidentally’ in others in terms of (1). True, a word like yesterday could be
polysemous in the sense that there would be two homonymous (homophonous)
words of this shape, one of which means ‘yesterday’ and the other ‘accidentally’.
In that case, we would consider them two different expressions (the surface shapes
of which incidentally coincide), and the principle of compositionality would apply
to both expressions separately and independently. On the other hand, were this
to be the case, our hypothetical word yesterday would lead to ambiguities in most
cases. That is, most sentences would be ambiguous if they contained it as a con-
stituent. But the definition in (1) would even allow a situation in which yesterday
could unambiguously refer to ‘yesterday’ in some cases, and ‘accidentally’ in all
others, which is hard to imagine in any human language. (This example will be
contrasted with other types of ‘ambiguities’ in Section 4.2.)

Ad (2ii): There are few things we could not do with artificial meanings.*
The simplest way of showing this is the following. Obviously, the intention of the
principle of compositionality as formulated in (1) is that the meanings of complex
expressions depend on the meanings rather than the forms of their sub-expressions.
However, if what a ‘meaning’ is is not constrained, then we could assign character
strings to certain sub-expressions as their meanings (say, character strings corre-
sponding to their orthographic form), and have the combination function behave
differently depending on what those strings are, thereby getting around an essen-
tial aspect of what (1) intends to claim. I will not have too much to say about
this in the following. Note, however, that a remedy for the weakness in (2i) could
also help solving (2ii): For example, if the combination functions simply cannot
perform operations on character strings, then the above ‘trick’ is not feasible.

Ad (2iii): There are few things we could not do if we did not constrain the
assignment of meanings to expressions. Although the principle of compositionality
intends to constrain the assignment of meanings to complex expressions, we can
still do almost anything if the assignments of meanings to simple expressions is
left unconstrained. For example, if we could determine the meaning of a simple
sub-expression depending on what other expressions occur in the complex expres-
sion (and ‘the way in which they are put together’), then the meanings of complex
expressions could depend on the shape of their constituents, which would be un-
desirable, as pointed out in (2ii) above.

My conclusion is that new principles, constraining the compositionality prin-
ciple in (1), should be developed and adopted for the syntax/semantics interface

4 Cf. Janssen (1983) and Partee (1984).

4

of natural languages. They must constrain both the class of functions that can be
used for combining the meanings of the sub-expressions of a complex expression,
and the way in which simple expressions are assigned meanings. The following
sections will be devoted to such constraints.

Before proceeding, let me briefly digress on a problem that both the traditional
concept of compositionality and the stricter version to be proposed must face. This
problem is that non-transparent expressions by definition violate the principle of
compositionality, since their meanings are unpredictable from the meanings of
the words that they contain and the way they are combined.’> There are various
possibilities of dealing with such expressions.

First, we could say that they constitute exceptions from the principle (that is,
we could formulate the principle in such a way that it applies to transparent com-
plex expressions only). I believe this is incorrect, because many non-transparent
expressions are partially compositional, and preventing the principle of compo-
sitionality from applying to them would make wrong predictions. For example,
in languages that make lexical distinctions between verbs with different aspec-
tual properties, an idiom headed by a verb that belongs to a particular aspectual
class will behave accordingly. Thus, in Russian, there are no idioms headed by
perfective verbs that are not perfective as a whole, and so on.

Second, we could say that non-transparent expressions are somehow not com-
plex at all. This would also be incorrect, because most non-transparent complex
expressions pattern together with transparent ones, and participate in similar pro-
cesses, so that their syntactic complexity is undeniable. Now, the term complex
expression in the principle (1) is to be understood in the syntactic sense, or the
entire principle becomes vacuous.

Third, we can say that the idiomatic, non-transparent aspect of a complex ex-
pression belongs to ‘the way in which the sub-expressions are put together’. I think
this is the only correct way of dealing with non-transparent expressions. For ex-
ample, take the upper hand is clearly a complex expression with a non-transparent
meaning. Now assume that ‘the way in which its parts are put together’ is not
simply the derivation that produces analogous transparent expressions, but an
exceptional, qualified version of that derivation, which produces just this phrase.
Then its meaning can be seen as perfectly compositional. True, this procedure
would allow us to explain away many odd cases; it would even allow us to treat
intuitively non-compositional languages as compositional (but having many excep-
tional derivations, maybe for every expression). But positing special derivations is

5 This problem was used as a counter-argument against compositionality by
Bresnan (1978), among others.

5

costly and calls for independent motivation. On the other hand, this treatment al-
lows us to treat ‘partially transparent’ expressions correctly, since any exceptional
derivation may have regular, non-exceptional aspects.

To conclude, I would like to emphasise that the problem of non-transparent
expressions is unrelated to the problems of compositionality mentioned in the
remarks (2i-iii) above and, in general, to the issues addressed in this paper, so the
arguments given above are tangential to the main points to be made.

2. A Non-Compositional Language

As I suggested in the above, the sense in which natural languages are intuitively
compositional is much narrower than the definition in (1). To illustrate this,
and to come closer to what further constraints should be imposed, let me briefly
present a language which is wildly non-compositional in the intuitive sense, i.e.,
very dissimilar to natural languages, although it can be given a compositional
interpretation under the definition (1). The language in question is the language
of Unix commands. As a matter of fact, probably the command language of any
computer operating system would do. I chose Unix because it is best known to
the academic community. The reader familiar with the basics of Unix commands
may skip the following sub-section.

2.1. Basics of Unix Commands

A Unix command (also called command line) consists of a command name, fol-
lowed by a list of options (which are in principle all optional and their order does
not matter in principle), followed by zero or more arguments (some of which may
be optional). (The options and the arguments together are called parameters.)
For example, the command name rm (for ‘remove’) can be followed by the options
-d, -f, -i and/or -r, and an argument (file) (the name of the file to be removed).®

Options come in two varieties: they either consist of a hyphen and a string
(such an option is called a switch or a flag: the options of rm mentioned above
belong here), or a hyphen, a string and an other string. For example, the command
line

make -f (makefile) (target)

6 T will make unforgivable simplifications here and in the following as far as
the real complexities of the Unix command language are concerned. For
example, in actual fact, many other options can appear with rm in various
implementations, and in all implementations, more than one file name can
be given.

6

invokes the program make with the argument (target), and specifies that the rules
of producing the target are described in a file called (makefile). The latter type of
options are said to consist of an option letter (£ above) followed by its argument
((makefile) above). (Whether a blank is needed between the option letter and
its argument depends on the implementation, or even on the individual command
names.) With some command names, the flags and the option letters can be mixed
freely, and the arguments of the option letters may follow a conglomerate of flags
and option letters in the order in which the corresponding option letters occur.
In some cases, such a conglomerate can be written in one single word, introduced
with a single hyphen. So, if the command name make can be followed by the
flag -n (‘do nothing, just show what you would do’), then the following may be
equivalent in an implementation:

make -n -f (makefile) (target)
make -n -f{makefile) (target)
make -nf (makefile) (target)
make -fn (makefile) (target)

As I said, options are in principle optional, but sometimes the situation is
much more complex. For example, it may happen that the presence of either a
particular argument or a particular option is obligatory. For example, the com-
mand name grep (‘look for strings in a file’) can be followed by an argument (expr)
(the expression describing the strings to look for) or an option ‘-£ (exprfile)’ (the
name of a file in which such an expression is to be found); exactly one of the two
is obligatory. In other cases, an option may appear only if another option is also
present. For example, the command name 1s (‘list names, properties etc. of files’)
can be followed by the option -t (‘sort by time rather than alphabetically’); an
other flag, -u, can also appear (‘sort by last access time rather than last modifi-
cation time’), but only if -t is also present. Finally, under normal circumstances,
arguments may be optional only if the remaining arguments are also optional, be-
cause arguments are only marked by their positions (they are not introduced with
option letters).

For the sake of clarity, a careful distinction is to be made between the com-
mand language and the shell languages of an operating system. The command
language determines how programs stored in the computer can be invoked with
various parameters. The shells, on the other hand, are command interpreters,
i.e., programs which help the user issue commands by preprocessing his/her in-
put command lines. Shells usually offer interesting possibilities to the user, e.g.,
they remember where various programs are to be found (for a faster invocation),
they remember what commands have been issued earlier (so that it is easier to

7

issue earlier commands again and again), they allow the user to use all sorts of
abbreviations for command lines, file names etc., they help the user invoke pro-
grams one after the other, or in various combinations (for example, they contain
flow-of-control possibilities like the if... then... construct), and they provide the
user with built-in commands that do not correspond to separate programs, but
are carried out by the shell itself. For the sake of simplicity, the language that I
am talking about here is the command language rather than any particular shell
language.

2.2. The Non-Compositionality of Unix Commands

As I mentioned in Section 1, the compositionality of an entire language is a
gradual concept. It may happen that every single expression of a language is
constructed using some special derivation. Such a language would satisfy the
principle of compositionality in a vacuous way, since none of its expressions would
be transparent. However, it would be entirely non-compositional in the intuitive
sense, i.e., it would be very dissimilar to natural languages. The Unix command
language constitutes an intermediate case: most command lines can be seen as
having a more or less transparent interpretation, yet all users agree that their
semantics is far from similar to the semantic of natural-language utterances.

What is the reason why Unix commands ‘feel’ so non-compositional at times?
Obviously, this is due to the fact that, despite their fairly regular syntax (in the
non-technical sense of ‘regular’), expressions in the same syntactic position (even
literally identical expressions) fulfil very different functions from one command to
the other. That is, both the simple expressions (command names, flags, option
letters) and their ways of combination (being a first or second argument, being an
option etc.) lack constant meanings. Let me present a few examples to illustrate
this.

Command names may have multiple (vaguely related) functions. For example,
the command mount is used to attach a data-storing device (such as a data disk) to
the file system when it is followed by an argument, whereas it displays information
on the currently attached data-storing devices when invoked without an argument.
The command sendmail has many unrelated functions, such as sending mail,
rebuilding the database describing mail protocols, and so on.

The meanings of flags may vary from one command name to the other. For
example, the flag -1 means ‘produce long, verbose listing’ when used with the
command 1s (mentioned above), whereas it means ‘count lines only’ when it fol-
lows the command name wc (which is used for counting the number of lines, words
and/or characters in a file). The flag -v means ‘produce verbose output’ with
many commands, whereas it means ‘display non-matching rather than matching
lines’ when used with grep. As we have seen, -f as an option letter may abbreviate

8

‘file’ (it precedes the name of an auxiliary file, such as one containing commands
or expressions), but it stands for ‘force’ when used with rm (in which case various
precautions are not taken by the rm program).

There is no uniformity as to what is expressed with an (obligatory or optional,
first or second) argument or with an option. For example, as we have seen, the
expression that tells grep what strings to look for may appear in an option (pre-
ceded by -e) or as an obligatory argument. The name of the target archive file of
the tar archiving utility can only be expressed with an option (‘-f (file)’), while
its argument is the name of the file to be extracted from or added to the archive.
On the other hand, as we have seen, the name of the target is an argument of the
command name make.

The examples could be listed indefinitely. Everyone who has used Unix will
know how often the so-called manual pages (descriptions of the syntax and se-
mantics of each command) have to be consulted in order to find out about the
idiosyncratic properties of a command. Clearly, the heterogeneous behaviour of
the commands is due to the fact that each command name corresponds to a pro-
gram, and it is those programs rather than the shells or the operating system
that deal with the parameters given in the commmand line. That is, it is within
the discretion of the programmer who creates those programs to define how they
should behave. In other words, the interpretation of the parameters is the ‘internal
affair’ of each individual program. The only way to constrain the heterogeneity of
their interpretation is to instruct the programmers to be more consistent.

However, the interpretation of the Unix command language (and of other
computer command languages, for that matter) is trivially compositional under
the traditional concept of compositionality, since the programs corresponding to
the commands contain the definitions of the functions that they compute, and the
programs themselves are interpreted compositionally. But those programs do all
sorts of ‘tricks’, falling into each of the three classes that I mentioned in (2i-iii)
in Section 1. That is, (i) they embody arbitrary functions (any function that
a computer program can compute); (ii) they have access to their parameters in
the form of character strings, which means that the compositional calculation of
the meaning of a command line must rely on an odd concept of ‘meaning’; and
(iii) the way in which ‘real’ meanings are assigned to the parameters (e.g., the way
in which a character string is taken to refer to a file) is not systematic (because it
is also an ‘internal affair’ of the programs invoked).

We can see that the intuitive non-compositionality of command languages like
that of Unix stems from the weak points of the principle of compositionality as
described in (2) in Section 1. If we were to build a shell simulating a composi-
tional interpretation for Unix commands, we should solve the general problems of
compositionality.”

7 We have proposed a partial solution for this in Kélmén and Radai (1994).

3. Strong Compositionality

In this section, I develop an alternative to the traditional concept of composition-
ality. The alternative will consist in adding two sub-principles to the traditional
definition (see (1) in Section 1), called Independence and Additivity. The result-
ing, more restrictive, principle will also be called Strong Compositionality. The
following sub-sections introduce these principles.

3.1. Independence

I will start with the problem of assigning meanings to the sub-expressions of an
expression. We have seen that the intuitive non-compositionality of Unix com-
mands is partly due to the fact that the program invoked is free to interpret the
parameters, depending on its idiosyncratic contents. The principle of composition-
ality (see (1) in Section 1) leaves it open how the sub-expressions of a complex
expression are assigned meanings. To satisfy the intuitively desired requirements
of compositionality in a hypothetical Unix command language, the meanings as-
signed to the parameters must not depend on what the command name is and
what the other parameters are. That is, meanings must not be assigned in a
construction-specific manner. I propose the following principle to achieve this:
(3) Independence

The meanings of the constituents of a complex expression are assigned

independently of each other, of the way in which they are put together, and

of the function that yields the meaning of the complex expression.

If a language obeys Independence, then the meaning of an expression may
not vary depending on what it is a constituent of. Were we not to impose such a
constraint, very similar constructs (e.g., containg the same expression in the same
syntactic role) could be interpreted in heterogeneous (or even unrelated) ways.
Note that this principle implies that the meaning contributions of the constituents
of an expression are constant, i.e., they do not vary from one construct to the
other. This means a certain context-independence, which many would deny. I
conceive of this as a price to pay for a reasonable alternative to the traditional
concept of compositionality.

The role of the external context in the interpretation of complex expressions
is undeniable, but it is not a challenge to either Compositionality or Independence
as long as we can reduce it to an influence on the assignment of meanings to
simple sub-expressions, and this seems perfectly feasible (cf. Partee (1984)). On
the other hand, the principle of independence also does not prevent those meanings
that the sub-expressions are assigned from interacting with each other to produce
complex meanings (cf. Section 4.2). We only want to exclude the dependency
of the meanings of complex expressions on the formal properties (shapes) of their
sub-expressions.

10

3.2. Additivity

The variability of meaning assignment is not the only reason why the meanings of
command names and parameters are not constant in Unix commands. Even if we
assume the principle of independence, the programs invoked by these commands
may deal with the meanings of the parameters in idiosyncratic ways, because they
can do anything a computer program can do. That is how, for example, the
program mount may behave in two entirely differently ways depending on whether
it is passed an argument at all. This peculiar, heterogeneous behaviour is not
related to the way in which its eventual parameter is assigned a value.

To achieve a uniform behaviour of commands, we should be able to stipulate
that the meaning contribution of the command name cannot be radically altered
by the presence or absence of parameters, and the other way round, the meaning
contribution of a parameter or a type of argument must not be radically altered by
the command that it is given to. This implies a non-destructive way of combining
constituents: whatever each constituent contributes to the meaning of the entire
complex expression must be constant from one expression to the other. This can
be formulated as a separate principle:

(4) Additivity
The function that combines the meanings of the sub-expressions of a com-
plex expression must not destroy the information contained in those mean-
ings.
The name ‘additivity’ is motivated by the fact that, if a function obeys this prin-
ciple, then the meanings of the sub-expressions are simply ‘summed up’ in some
technical sense of the word. Obviously, the definition presupposes a concept of
information content for meanings. Usually, this kind of concept is defined by
attributing an algebraic structure to the domain(s) of meanings. The structure
must contain an ordering in terms of informativity, and an operation of combin-
ing pieces of information, which should not lead out of the structure. Assuming
such a concept, Additivity means that the combination of two members of such a
domain must yield a third member that is ordered higher than both operands in
the informativity hierarchy.

For example, assume that the meaning (denotation) of the command name rm
is a set of processes the only effect of which is the removal of some file. To combine
the meaning of rm with the meaning of a parameter, the parameter in question
must be assigned a meaning in the same domain. For example, an argument (file)
could be assigned the set of all processes that affect the file called (file), and the
flag -f could denote all processes that do not take certain precautions. Then the
meaning of ‘rm -£ (file)’ could be produced by taking the intersection of the three
sets. This operation clearly satisfies Additivity if the domain of meanings is the
powerset of possible processes.

11

In general, Additivity is always satisfied if the domain of meanings is a pow-
erset and the only operation that may combine meanings is intersection. Note
that Additivity presupposes that the meanings of the sub-expressions combined
are of the same type (i.e., they are comparable in terms of the informativity or-
dering). This is an unorthodox requirement, which calls for further explanation
and motivation. I will turn back to it in Section 4.

Additivity makes it very cumbersome to deal with non-monotonicity, i.e.,
phenomena in which so-called default values are involved. For example, if we
invoke the program cc (which compiles source programs written in the C language
into object files) without specifying what the output (executable) file is to be
called, the compiler will create a file called a.out. We can override this default
name with the -o option letter. Now, if we were to interpret cc as the set of
processes that result in compiling a source file into some object file, and the option
‘-0 (objfile)’ as the processes in which the output file is (objfile), then we get the
correct interpretation of their combination by just intersecting the two denotations.
In that case, however, we will not get the right result for the interpretation of cc
invoked without a -o option (in which case the output file name is a.out). On
the other hand, if we were to build the name a.out into the denotation of cc,
then the intersection with that set with the denotation of ‘-o (objfile)’ would
be empty (unless (objfile) happens to be a.out). The former set would contain
processes in which the output file is called a.out, and the other would possibly
contain processes in which it is called differently. So Additivity excludes those
combinations of meanings in which one meaning destroys or blocks some default
information associated with another. I will turn back to this problem in a moment
(in Section 3.2.1 below).

Note that the denotation of ‘-0 (objfile)’ above is related to what a certain
file (referred to as ‘the output file’ above) is called, and the denotation of cc must
involve the same file. Obviously, the semantic object corresponding to ‘the output
file’ in the denotation of cc must be a variable the value of which is to be {objfile)
in terms of the denotation of ‘-o (objfile)’. That is, we have to assume that
variables are present in the semantic domains with respect to which commands
are interpreted (e.g., in the states of the computer; in the Unix operating system,
so-called environment variables can play this role). In what follows, the term
‘variable’ will refer to such objects rather than variables in the language of semantic
representations.

3.2.1. Dealing With Defaults

As is clear from the above, Additivity makes it impossible to combine meanings
in such a way that one meaning overrides the defaults associated with another

12

meaning. As an example, I quoted Unix command lines like
cc -o (objfile) (sourcefile),

where the default object file name associated with the command cc can be over-
ridden by the file name introduced with -o. Obviously, it is not possible to solve
this problem by just designing a command interpreter (a shell) which preprocesses
the user’s input command lines and obeys strong compositionality.® In particular,
a meaning that would include a piece of information like ‘if there is no -o option
in my command line, my output file name is a.out’, which we should assign to
the command name cc, is probably not a possible meaning.

To treat cases like the above in an additive way, we must assume more complex
domains for meanings (with the appropriate ordering in terms of informativity).
For example, the denotation of the command name cc has to contain the set
corresponding to its underspecified meaning (in which the name of the output
file is not specified), plus an indication on how default values can be provided if
necessary. That is, I propose a separation of meanings from sources of default
values: the denotation of a program name is to be an ordered pair (S, V), where
S is the set of processes corresponding to the largely underspecified meaning,
whereas V' is some indication of how default values can be produced.® For the
sake of simplicity, we can say that V' is an assignment function assigning (default)
values to variables.

Technically speaking,

VCVarx |J D(r),
r€TYPE

where Var is the set of variables (as semantic objects, as I explained in Sec-
tion 3.2), TYPE is the set of types, and D is the function that assigns a domain
to each type. Since V is a function, we have

(3:a)s($9ﬁ) EV=a=p
SO we can say

10 {a if (z,a) € V;

* elsewhere

8 This is a limitation that we had to face in our earlier paper mentioned in
footnote 7.

9 The two components can be seen as the committing vs. deferred information
content of denotations, as explained in Kalmdn (1990).

13

(assuming that * ¢ | J, cprypg D(7)). Obviously, we also stipulate that, if 2, € Var,
(i.e., if z is a variable of type 7), then

V(zr) € D(r),

i.e., V assigns an object of the appropriate type to each variable. The ‘intersection’
of the two pairs P, = (S1,V4) and P; = (53, V2), written P; M P, can be defined
as follows:

Py N Py =¢et (S1NS2, V1 + V3),

where V; + V;, stands for the ‘combination’ of the valuations V; and V5, defined as
follows:

Vi + V2 =4er {{z,0) € V3 UV23/\($,5> EVUV, = a =g}
B

That is, we take the union of V; and V; without those ordered pairs that assign
incompatible values to the same variable. The informativity ordering over ordered
pairs of the form (S, V) can now be defined as

P, £ Py thaet PLN Py = P,.

That is, P; is more informative than P, if its first component is a subset of the
first component of P,, and its valuation is a subset of the valuation in P,.

Now, assuming that the first component of P; is the set of processes corre-
sponding to the underspecified meaning of cc, and the first component of P, is the
set of processes in which the output file is called (objfile), then the first component
of P, M P, is exactly the set of processes that we want ‘cc -o (objfile)’ to denote,
irrespective of what its second component contains.

As a matter of fact, default values may be layered in such a way that assigning
a default value to a variable changes the default values available for other variables.
Therefore, in actual fact, the second component, which produces default values,
should be enriched. For example, it could be a set of nodes in a default inheritance
hierarchy from which default values can be inherited if necessary. I will not dwell
on this possibility here, because it is not directly relevant to the issue of strong
compositionality.

14

3.3. Strong Compositionality

The definition of strong compositionality is the conjunction of Compositionality,
Independence and Additivity. I submit Strong Compositionality as an alternative
to the principle of compositionality.
(5) Strong Compositionality
The meaning of a complex expression is strongly compositional if and only
if it obeys
(i) the Principle of Compositionality (cf. (1) in Section 1);

(ii) the Principle of Independence (cf. (3) in Section 3.1); and

(iii) the Principle of Additivity (cf. (4) in Section 3.2).
It should be clear from the above that the three sub-principles are independent.
Notice how the weaknesses of Compositionality (cf. (2) in Section 1) are remedied
by Strong Compositionality. Additivity is an answer to the arbitrary character of
combination functions (cf. (2i)), and Independence constrains the assignment of
meanings to simple sub-expressions (cf. (2iii)). As I mentioned earlier, the third
weakness of Compositionality (i.e., the arbitrary character of meanings, cf. (2ii))
is probably harmless if the two other problems are discarded.

4. Strong Compositionality in Natural Language

This section deals with some consequences of Strong Compositionality on the
semantics of natural language. First, in Section 4.1, I will examine the effect of
Additivity (and Strong Compositionality in general) on common views of semantic
combination and types, and I will conclude that the traditional (Fregean) metaphor
of ‘incomplete’ linguistic expressions as functors and ‘complete’ ones as operands is
to be abandoned. Second, in Section 4.2, I will say a few words how the meanings
of sub-expressions can interact during the process of additive meaning composition
to produce the meanings of complex expressions. Finally, in Section 4.3, I will
sketch a technical solution for combining meanings without making reference to
‘globally available’ variable names. This will involve an operation called coalesced
intersection, and I will also elaborate on what kind of semantic domains we might
need for the interpretation of natural-language expressions.

4.1. Abandoning the Functor Metaphor

I have touched upon various consequences of Strong Compositionality on natural-
language semantics already. In particular, I argued that the idiomatic aspects
of expressions must be accounted for in terms of special ways of combination
(in Section 1), and I argued that the influence of expression-internal contexts
on interpretation are due either to genuine ambiguity or underspecification (in

15

Section 3.1.1). In this section, I will dwell on a very particular consequence
of Strong Compositionality, originating from the principle of additivity. If the
combination of the meanings of constituents is to be additive in the technical sense
explained in Section 3.5, then the denotations of the immediate constituents of a
complex expressions must be comparable in terms of informativity. Were they not,
we could not perform intersection-like operations on them. This implies that the
traditional functor/operand metaphor of combining meanings must be abandoned.

In the interpretation mechanism that I have proposed for Unix command
lines, both the name of a command and the option attached to it denote sets of
processes (or more complex structures that contain them as components). Note,
however, that an option on its own is not complete in the syntactic sense: no option
occurs without a command name. In the traditional functor/operand approach,
an incomplete expression must be a functor, which can be completed by providing
it with the operands that it expects.!® That is, options should be translated as
functions expecting denotations of command names and yielding denotations of
command lines. But, in general, functors are of different types than their operands.
So Additivity seems to exclude the functor/operand metaphor.

Abandoning the functor/operand metaphor raises two problems:
(6) Problems with Additivity

(i) syntactic obligatoriness cannot be expressed in terms of semantic in-
completeness; and
(ii) semantic incompleteness cannot be expressed in terms of functional
types (expecting arguments).
The problem in (6i) does not seem too big a price to pay for Additivity. In cases
like that of command names and options in Unix commands, the obligatoriness of
a command name in command lines has to be stated somehow, anyway, and the
fact that options do not occur on their own will follow from that statement. As
a matter of fact, in most natural languages, adjuncts can occur on their own as
utterances.

The problem in (6ii) looks more serious at first sight. How can we tell from
the denotation of, say, a verb, if it is complete without ‘intersecting’ it with the de-
notation of an argument? What is it in the denotation of a determiner that makes
it so incomplete that determiners seldom occur on their own in natural languages?
The functor/argument metaphor explains this type of facts very straightforwardly,
to the extent that it seems almost unquestionable. For example, if a verb expresses
a relation between two entities, then it is only natural that its occurrences are in-
complete unless it is complemented with two other expressions, denoting entities.

10 The idea that syntactically incomplete expressions are to be considered
functors originates from Frege (1870).

16

I propose a radical solution to this problem. Maybe ‘semantic completeness’
is not an indispensable concept at all. If we are ready to accept a model in which
meanings are ordered in terms of informativity, it is not clear at all whether we have
to posit the existence of ‘complete’ meanings on formal, ontological or linguistic
grounds. In formal terms, it is certainly possible that the algebraic structure of
meanings is not atomic, i.e., there need not be any meanings in the structure that
can only be enriched in such a way that a contradiction arises. Although it is not
ontologically implausible that certain entities in the model are ‘complete’, it is not
at all clear whether any linguistic expression, even a large piece of discourse, can
successfully denote such an entity. In sum, I see no compelling reason why the
Fregean theory, in which sentences and individual names are ‘complete’, should be
adopted.

In terms of this radical solution, a transitive verb with missing arguments
or a determiner without a noun are never semantically, but at most syntactically
incomplete. This need not imply a ‘mismatch’ between semantic and syntactic
structure, however. In the same way as a Unix command line must start with
a command name syntactically, and is systematically associated with a type of
meanings, uttering a transitive verb phrase may syntactically require the utterance
of a transitive verb and a direct object, and denote a certain type of states of affairs.
If there is any ‘mismatch’ at all between syntactic and semantic structures (from
this perspective), it is between the ‘completeness’ properties of certain syntactic
constructs and their semantic counterparts: ‘incompleteness’ may make sense for
some syntactic constructs, but not for the corresponding semantic objects.

4.2. Interaction of Meanings

Although Independence prohibits the meanings assigned to sub-expressions from
depending on each other, there are clear cases when the meanings of sub-expres-
sions interact in the process of interpretation. For example, consider the following
expressions:
(7) Uses of coffee
a. some ground coffee
‘some ground coffee (seeds)’

b. a hot coffee
‘a hot coffee (liquid)’
c. a quick coffee
‘a coffee prepared/consumed/... quickly’

d. after a coffee

‘after consuming a coffee’

These expressions illustrate what we might call productive ambiguity: it is very
common for names of plants (like coffee) to stand for their consumable parts (like

L

17

coffee beans) as well as its derivatives in various stages of preparation (like the
roasted seeds and the liquid in (7a-b)). On the other hand, nouns referring to
food quite often take modifiers that refer to their preparation or consumption (as
quick in (7c)), and the nouns themselves may stand for the consumption of the
food in question (as coffee in (7d)). If, however, we assigned the meanings ‘quickly
prepared’ or ‘quickly consumed’ to gquick in (7c) or the meaning ‘consumption of
coffee’ to coffee in (7d), we would violate Independence. It is also clear that we
would ‘miss generalizations’ if we were to treat the ambiguities in (7) as accidental
surface coincidences (homonymy). On the other hand, since the formal properties
of the sub-expressions play no role in the interpretation of the above examples, it
must be possible to explain ‘productive ambiguities’ of this sort without violating
Independence.

Quite obviously, languages like the Unix command language do not exhibit
phenomena like the ‘productive ambiguities’ in (7), because these phenomena stem
from the important role of implicitness in natural-language interpretation. The
examples in (7) are compact expressions corresponding to more complex mean-
ings, which no competent speaker would have any trouble to paraphrase. On the
other hand, there is some non-determinism in the interpretation of such compact
expressions. For example, it is not absolutely excluded for hot coffee in (7b) to
stand for ‘hot coffee powder’ or ‘hot coffee beans’ in certain contexts.

What the examples in (7) show, then, is that natural-language meanings can
be combined in more than one way, and how exactly the hearer is supposed to
proceed is often left implicit by the speaker. Both the fact that competent speakers
can produce equivalent, more explicit paraphrases and the fact that the actual
choice of the paraphrase is not entirely determined indicate that the processes
involved are similar to other cases related to implicit information. For example,
it is usually left implicit why two sentences are put one after the other in a piece
of discourse (because they are part of the same story, they support the same
argument, etc.). Similarly, definite descriptions are usually compact descriptions
that can be made more explicit by attaching relative clauses to them. In sum, the
process of interpreting expressions like those in (7) involves something very similar
to certain discourse processes in which the speaker expects the hearer to establish
‘missing links’ such as anaphoric and rhetorical relations.

This suggests that combining the meanings of natural-language expressions
may involve more than the simple ‘intersection’ operation that I have proposed in
connection with Unix commands. The meanings assigned to the constituents of
such expressions are processed and brought into harmony with each other before
‘intersecting’ them. We can think of this ‘pre-processing’ as analogous to those
phonological processes (e.g., assimilation) which affect the lexical phonemes when
they enter into contact through affixation. Most importantly, Additivity requires

18

the pre-processing operations to be non-destructive. For example, in the expres-
sions in (7), it must be possible to derive the meanings of coffee (and quick) from
more abstract (less specific) meanings. That is, using the phonological metaphor,
phenomena analogous to genuine morphological (not phonologically motivated)
stem or affix alternation are excluded from semantics.

What does the difference between Unix commands and natural-language ex-
pressions lie in? As I said earlier, in Section 3.2, an analysis of Unix command
lines that respects Additivity must posit variables that both command names
and options have access to. For example, the definition of cc makes reference
to the variable corresponding to ‘the output file’ (called, say, OUTPUTFILE), and
the meaning of the option ‘-o (objfile)’ assigns a value to the same variable. I
also mentioned, in Section 3.2.1, that the definition of cc may assign a default
value to the same variable, which can be retrieved if necessary. What I have not
dealt with so far, though, is how and when such default values are assigned. In
practice, it is the program cc which, when invoked, checks for relevant parameters
and assigns default values if none is present. Be it as it may, we can think of this
process as if a program different from cc was invoked, one in which the value of the
variable OUTPUTFILE is set to its default value. Such a different cc program would
qualify as an instance of the original, as its denotation would be more informative
than that of the original.

It is clear that, since the interpretation of Unix commands is the ‘internal
affair’ of the programs that they invoke, the interpretation process must lack a
mechanism of the above sort, i.e., a module that would deal with the assignment
of default values by creating or invoking various instances of programs. On the
other hand, we are free to posit such mechanisms for the interpretation of natural-
language expressions if we can justify them. For example, we could say that the
default value of the direct object of the verb leave is the reference location:

(8) Default direct object of leave
a. I haven’t seen him. Maybe he left already.
‘Maybe he left here already’
b. He went to Paris, but he left already.
‘He left Paris already’
We could also say that some interpretation mechanism converts the meaning as-
signed to leave into an instance of that meaning, in which the variable corre-
sponding to the direct object is assigned the reference location as a value. As this
qualifies as an instantiation, it does not contradict Additivity (no information gets
destroyed).

The instantiation mechanism has nothing to do with Independence, which
only constrains the context-dependency of meaning assignment. So the instantia-
tion of meanings is free to be sensitive to the internal context. That is, a strongly

19

compositional analysis of ‘productive ambiguities’ (cf. (7)) would be feasible if only
we could do it in terms of this kind of mechanism.

Obviously, the examples in (7) are not similar to the working of the cc com-
mand in Unix. For example, it would be difficult to argue that the denotation of
coffee refers to a variable that the denotation of quick also mentions. In particu-
lar, we do not want to say that the denotation of coffee is necessarily related to a
particular process with regard to which ‘quick’ makes sense at all (cf. the examples
(7a-b), which show no trace of any process). On the other hand, by relying on
the (lexical or encyclopedic) knowledge that coffee is prepared and drunk by peo-
ple, such processes are somehow licensed. The licensing process can be analogous
to what the instantiation would do to the program cc in our hypothetical Unix
command interpreter. That is, we can assume that the denotation of coffee con-
tains some indication on how to assign default values to a variable that expresses
‘what we do with coffee’, and the instantiation process assigns one of the default
values. (The existence of multiple default values is a separate, unrelated issue.)
Then quick may modify that process in the same way as ‘~o (objfile)’ does to ‘the
output file’ with cc. This is why a guick window does not seem to make much
sense unless maybe in a workshop where the relevant variable can be assigned a
default value (i.e., there is a typical process affecting/creating/... windows, as in
a carpenter’s workshop).

The other examples in (7) can be explained in an analogous manner. We can
assume that, in the prototypical (‘intersective’) adjectival modification structures
exemplified in (7a-b), the adjective usually modifies a relevant part of what the
noun denotes, as in pink grapefruit ‘pink on the inside’ vs. pink apple ‘pink on the
outside’ (cf. Quine (1960), Partee (1984)). So, in these cases, it seems that we
have to instantiate the denotation of the adjective rather than that of the noun.!!
What part (or, in the case of coffee, what stage) of an object is relevant for the
adjective to modify depends on the noun, but yields a specialized denotation of
the adjective (which often lexicalizes as such, like adjectives referring to colours
of human skin or hair in many languages). Finally, after coffee in (7d) makes it
necessary to instantiate the denotation of coffee (so that a process affecting the
coffee appears in it explicitly). The analogy of (7c) and (7d) is also shown by
the fact that the same class of nouns can occur in both contexts (after quick and
after).

For some other examples of interactions of meanings, let me have a quick
look at verbs and their arguments. The phrase eat the grapefruit usually is not

11 The difference between the interpretation of various types of adjective /noun
constructs is not predicted by Keenan'’s (1974) ‘functional principle’, which
says that the interpretation of a functor may depend on its operand, but not
vice versa. This should not bother us at all, since we have just abandoned
the functor/operand metaphor.

20

~
interpreted as eating the fruit without leaving anything from it, but as ‘eating the
edible part of it’. As a matter of course, the definite description in this paraphrase
is almost always left implicit, to the extent that we can almost think of it as part
of the lexical meaning of eat. But in many cases the relationship between a verb
and a certain type of argument varies depending on the argument. For example,
consider:
(9) Ambiguity of bake
a. I baked a cake.
‘I created a cake by baking’
#‘I subjected a cake to dry heat on a hot surface’
b. I baked a potato.

#¢I created a potato by baking’

‘I subjected a potato to dry heat on a hot surface’
The relation between bake and its direct object is one of creation in (9a), whereas
it is a relation of affection in (9b). We could take either bake or the grammatical
relation ‘direct object of’ to be ambiguous, and let the implausible interpretations
(marked with a ‘#’ above) be filtered out by some mechanism. On the other hand,
we could also think of the two cases in (9a) vs. (9b) as triggering two different
instantiations of the denotation of bake. In the ‘correct’ interpretation of (9a), the
abstract meaning of bake is enriched in such a way that a variable corresponding
to the object produced is explicitly present in it, and the interpretation of ‘direct
object of’ is perfectly willing to affect such objects, just like the option letter -o
is willing to affect output files. In the same way, in the preferred interpretation
of (9b), we produce an instance of ‘bake’ in which the variable that we explicitly
introduce is the main ingredient of the food prepared, and the relation ‘direct
object of’ is again willing to take it to be the object most directly affected. The
concept of ‘explicit introduction’ will be clarified to some extent in the next section.

I am aware that the analyses presented in this section are much too sketchy
and far from complete. Remember that their main point is simply that we need not
violate either Independence or Additivity to account for the interactions of mean-
ings if we can think of the processes involved as instantiation, i.e., specification
operations, which lead to more informative denotations.

4.3. Coalesced Intersection

In Section 3.2 we have seen how the meanings of the command name cc and
the option ‘-o (objfile)’ can be combined through intersection: cc denotes the
set of computations that compile a C source file into some object file, namely,
the one referred to by the value of some distinguished variable, say, OUTPUTFILE,
and ‘-o (objfile)’ denotes the set of processes in which the value of OUTPUTFILE
is set to (objfile) for the time of the computation. Obviously, the intersection

21

of these two meanings yields the expected result because they both refer to the
variable OUTPUTFILE. We cannot always proceed in this way, however, because it
is not always the case that the meaning of each constituent specifies how exactly it
contributes to the meanings of complex expressions. For example, the constituents
of ‘-0 (objfile)’ are -o and (objfile), and the denotation of the latter does not
indicate what role the file that it refers to will play in complex meanings. It
is the fact that it acts as an argument of -o that determines its role. Thus, it
would be tempting to consider -o a functor and (objfile) its operand. But we said
earlier that it is undesirable to allow for function application as a way of combining
meanings, so a different solution is called for.

The solution I propose is to introduce ad hoc distinguished variables in such
cases, thereby imitating the ‘normal’ way of combining meanings seen above. To
introduce such ‘local’ distinguished variables, we will use the A-notation, so that
the meanings of -o and (objfile) will be represented as follows:

(10) Meanings with local variables

a. Meaning of -o: Az[OUTPUTFILE = z].

b. Meaning of (objfile): Ay[y = (objfile)].
Here the square brackets abbreviate that we are talking about a set of computa-
tions during which the expression(s) that they enclose hold. That is, the meaning
of -0 is a function from the values of z to the processes in which the value of
OUTPUTFILE is identical to the value of z, and the meaning of (objfile) is a func-
tion from the values of y to the set of processes in which the value of y is (objfile).
Obviously, although the above meanings are functions, we are mainly interested in
their ranges (co-domains), i.e., the sets of processes that their bodies denote. On
the other hand, the simple intersection of the two sets of processes would not yield
the desired result, i.e., the meaning of ‘-o (objfile)’: it would give us the set of
processes in which OUTPUTFILE is assigned some value, and (objfile) is the value of
some variable. What we want is a set of processes in the values of both functions
applied to the same argument, which ensures that OUTPUTFILE is assigned a value
identical to (objfile). The operation that produces this set will be called coalesced
intersection. The coalesced intersection of the meanings of -o and (objfile) above
must be something equivalent to

(11) Meaning of ‘-o (objfile)’
Az[z = OUTPUTFILE = (objfile)].

As can be seen, the basic equivalence that we want to hold for coalesced
intersection is the following (the symbol ‘@’ stands for coalesced intersection):

(12) Basic equivalence for Coalesced Intersection
Az(p) @ Ay(¥) = Az(ple/2] A ¥ly/2])

whenever z does not occur free in either ¢ or ¥. (As usual, p[z/z] is the same as
@, with the free occurrences of z replaced with z.) To ensure this equivalence, we
need to define the semantic value of coalesced intersection as follows:

22

(13) Coalesced Intersection
[f @ glv =aet {(2,8): [f1o(e) N [ge(e) = B},
where [], is the semantic-value function that assigns denotations to expressions
for any assignment v.
We can prove that the equivalence in (12) holds using the standard definition
of the \-operator, and taking conjunction to mean intersection:
(14) Proof of (12)
1. [/\x(fp)]],, =def {(Cf, ﬁ):[@]]v[.‘t:a] =ﬁ}a

where v[z : a] is the same as v except that it assigns « to z:

: “ o if y=2;
vz : a|(y) =det v(y) otherwise.

2. [Az(e) ® M)l = {(a, 8): Px()]u(e) 0 Py(¥)]u(e) = B}
by the definition in (13), which is the same as
{{a, B): H(YDBU{I!:Q] n ld’]v[y:a] =}
by the definition in (14.1) above. This is the semantic value of the left-
hand side of the equivalence in (12).
3. [‘F’[-"’/Z]Bv o E’\o]]v[a::v(z)]
if z does not occur free in . This is trivial.
4. [tp[x/z] A 1J)[y/Z]],, = I[‘P]]‘u[z:v(z)] n ['d"]lvly:u(z)]
by the interpretation of conjunction and using (14.3) above.
5. [\z(elz/2] Avly/2D)le = {{e, B): [plz/2] A ¥ly/2])ois:) = B}
by the definition in (14.1) above. This is the same as
{(aa ;6) I[‘P]] v[z:0][z:v(2)] n [“/’]u[x:a][yw(z)] o5 ﬁ}
by (14.4) above. Now, using the definition of v[z : @] in (14.1) above, it
is easy to see that

[f]v[z:or][zw(z)] o [f] v[z:a]

if z does not occur free in f. Since we have assumed in (12) that 2z does
not occur free in either ¢ or), we can use this equivalence to reduce the
semantic value of the right-hand side of (12) to

{(Q‘, ﬁ): {(lolvlz:or] n [‘llb] v[y:a] = ﬁ}’

which is identical to the semantic value of the left-hand side, as can be
seen in (14.2). Q.E.D.

As a matter of fact, we can even use coalesced intersection for combining
meanings which could also be combined with simple intersection. I will assume
that \-abstraction can be part of the ‘harmonization’ process mentioned in Sec-
tion 4.2. So the meaning of the command name cc, which is a set of computations,
can be converted into something equivalent to

(15) Meaning of cc
Az[cc' A OUTPUTFILE = z,

23

which can be combined with the meaning of ‘~o (objfile)’ (see (11) above) using
coalesced intersection:
(16) Meaning of ‘cc -o (objfile)’
Az[cc’ A OUTPUTFILE = z] @ Az[z = OUTPUTFILE = (objfile)] =
= Auf[cc’ A u = OUTPUTFILE = (objfile)].

Obviously, in terms of the definition in (13), coalesced intersection is defined
for any two functions that assign sets to the same type of entities. If the domain of
denotations is ordered in terms of informativity, and an intersection-type operation
is defined for its elements (i.e., we have an operation that produces the joint
information content of two elements), as we have assumed, then we can generalize
coalesced intersection to functions which map to that domain. Therefore, we must
be able to use coalesced intersection as the basic operation for combining natural-
language meanings as well.

The semantics of Unix commands is much more complex than I have sketched
so far. In an earlier paper, we proposed ordered quadruples to characterize sets of
processes in a radically simplified model;'? if we add default mechanisms (cf. Sec-
tion 3.2.1), the situation becomes even more complex. But, for obvious reasons,
the semantics of natural language has enormous complexities when compared to
Unix commands.

The semantic domains that underlie the interpretation of natural languages
are much more complex than those in the Unix command language. While the
latter consists of ‘machine states’ (basically, file structures, in which each file has
certain attributes, such as its name and the character string it contains), the mod-
els that we need for interpreting natural languages include various possible worlds
(hypothetical or real, actual or past/future) in which various individuals (and,
eventually, groups of individuals, if they have properties that are not predictable
from those of their members) exist, various relations hold for them. These possible
worlds are also dynamic in the sense that they may also change in time, which cor-
responds to the various eventualities that we can talk about in natural languages.
(This type of dynamism is not to be confused with the one to be touched upon
promptly.)

In modern formal semantics (called dynamic semantics), natural language
meanings are seen as instructions for the hearer to update his/her information
state about entities in the model. So we can think of denotations as sets of updates

2 In Kélmén and Rédai (1994), a set of processes is characterized by (1) an
assignment function expressing the local environment of the computation;
(ii) a set of preconditions for the execution; (iii) a formula describing the
maximal change effected by the process; and (iv) an environment change
corresponding to the list of variables the values of which may change as a
result of the computation.

24

in the same way as Unix command lines denote sets of computations, which may
change information states just like computations change machine states. But an
information state is much more complex than a machine state, because it is not a
complete description of a model, but some representation of what information is
available about it.

Owing to all these complexities, the deferred information content of a natural-
language denotation (if we posit such a thing, as was suggested in Section 3.2.1)
is also much larger and much complex than what we need for the interpretation
of Unix commands. It must encode a large body of linguistic and non-linguistic
(scientific and cultural) knowledge that may influence interactions of meanings (cf.
Section 4.2).

In sum, the complexities of natural-language semantics are enormous. So
enormous, in fact, that they prevent me from presenting short and illustrative
examples of the use of coalesced intersection, even simple examples like those
that I have presented from the Unix command language. In what follows, I will
try to just point at some features of the syntax/semantics interface that Strong
Compositionality requires.

Just the same as in the interpretation of Unix command names and parame-
ters, which we interpreted as functions mapping to the same domain (namely, that
of sets of processes), natural-language meanings will also be functions that map to
the same domain. Ignoring the complexities of that domain, let us simply think of
it as a structure of pieces of information about first-order models. We can think
of such a piece of information as a set of model fragments, which represent partial
information on models compatible with the current information state.!* What we
ignore in this way includes (i) deferred information altogether (i.e., the interaction
of meanings will be done by deus ex machina); (ii) the dynamic aspect of mod-
els (so I will assume that we are talking about static states of affairs); (iii) the
possibility of talking about various possible worlds (the assumption being that the
utterances are about one single possible world). For the sake of completeness, here
is the definition of a first-order model:

13 Given the way we will define it, the concept of a model fragment can be
seen as a formal rendering of the concept of situations in Kratzer (1986),
Berman (1987) and Heim (1990).

25

(17) First-Order Models

M = (U,T) is a first-order model of language L iff

1. U # 0 (U is the universe of the model);

2. I C Con x {J,erypg D(7,U), where Con = |J,cpypg Conr is the set
of non-logical constants in £, TYPE is the set of types (to be defined
below), and D(r,U) is the domain of type T given the universe U. I is
called the interpretation function of the model;

4. If (a,a) € Z, and (a,8) € Z, then a = . That is, T is a function.

3. If a € Con,, and (a,a) € Z, then a € D(r,U). That is, T maps non-
logical constants of type 7 to an element of the domain of 7.

(18) Types

The set TYPE of types is the smalles set such that

(i) e € TYPE;

(ii) t € TYPE;

(iii) If « € TYPE, and 3 € TYPE, then (o, 8) € TYPE.

(19) Domains of types

The domain of a type 7 given a universe U, written D(7,U), is defined as

follows:

(i) D(e,U) =det U. That is, e is the type of individuals.

(i) D(t,U) =det {0,U}. That is, t is the type of truth values, with the
empty set and the entire universe representing false and truth, respec-
tively. (Note that false and true coincide when U is empty; this may
never be the case when U is the universe of a model.)

(iii) D((e, B),U) =qet P @U)D(B,U). That is, (e, B) is the type of func-
tions mapping from the domain of a to the domain of 3.

Now we are ready to define what a model fragment is:

(20) Model fragments
If M = (U,T) is a first order model, then (U, I) is a model fragment over
M(written (U, I) € Fa) if and only if:
(i) U CU;

(i1) I is an interpretation function with respect to U, as we have seen in
the definition of first-order models (see (17));

(iii) If @ € Con,, then (a,u) € I if and only if (a,u) € Z, and u € U;

(iv) If p € Cony, then (p,a) € U if and only if (p,8) € T for some B such
that either (a) a=pf=0or (b) a=U and g =U;

(v) If P € Con; (for 7 ¢ {e,t}), then (P,a) € I if and only if (P,8) € T
for some 3 such that a = 8N D(7,U). That is, if the interpretation of
a constant is a function in the domain of 7, then we only keep those
ordered pairs from it which also figure in the domain of 7 restricted to

U.

26

As a matter of course, we will need an informativity ordering over sets of
model fragments. This will be somewhat more complex than the subset relation.
To define it properly, we will first define the relation ‘<z’ over model fra,gments

(21) Informativity of model fragments
If o1 = (U1, 1) and @3 = (U;, ;) are model fragments, then ¢; <7 ¢
(read: ‘¢, is at least as informative as @,’) if and only if ¢ is a first-order
model, and ¢, € F,,, i.e., if ¢, is itself a miodel fragment with regard to
©1. ‘

We can now define the relation ‘<’ over sets of model fragments:

(22) Informativity
If &, and ®, are sets of model fragments, then @, < @, (read: ‘@, is at
least as informative as ®,’) if and only if

/\ V Y1 <F 2.

©1E€EP; p2EP2

That is, ®; contains at most those model fragments that figure in ®,, but possibly
less (leaving less possibilities open); and possibly ®; contains more informative
versions of some fragments in @,.

It should be now possible to show that an expression that is syntactically
‘incomplete’, e.g., one that denotes a relation, may correspond to the same kind of
entities as a ‘less incomplete’ one (e.g., a one-place predicate) or even a complete
one’, like a sentence or an individual name.

Let me first consider an expression that denotes a relation, like the verb
loves. Since it is a relation, any interpretation function must assign it an entity
in the domain of the type (e, (e,t)). (That is, if (U,) is a model fragment, then
I(loves) € D((e,(e,t)),U).) I, for the sake of simplicity, we assume that the
model fragments in our domain are over one and the same model M = (U, T),
then the set of model fragments corresponding to loves will be

{(U, I) € Fpq: I(loves) # 0}.

That is, any model fragment which makes ‘somebody loves somebody’ true is
collected into a large set. We could also take just the least informative elements
of this set, because the more informative elements are predictable from them, but
it is simpler to proceed in this way.

Similarly, a one-place predicate like sleeps or -loves Joe (or even Joe loves)
can be assigned a set of model fragments in a similar way:

{(U,I) € Fpu: I(;Ieeps) # 0}

27

is the set of model fragments in which ‘someone sleeps’. To show that the coalesced
intersection of loves and Joe (assuming that Joe is the direct object of loves, which
we will get by deus ex machina), produces an analogous set, let us first see what
model fragments correspond to individual names. Obviously, the set for Joe is the
following:

{{U,I) € Fpq:1(Joe) € U},

the least informative element of which has {j} as its universe (where Z(Joe) = j),
and its interpretation just holds (Joe, j) and pairs of the form (P, {j}) (in which
P is a one-place predicate that holds for Joe).

To perform coalesced intersection, we will deal with functions that map ex-
pressions to sets of model fragments. For example,

{(u,8): @ = {(U,I) € Fa: \/ (u,v) € I(love)}},

velU

corresponds to ‘Az(z loves someone)’, and

{(u, ®):® = {(U,I) € Fu: V (v,u) € I(love)}},
veU

corresponds to ‘Az(someone loves z)’. Both of these can be produced from the
set of model fragments corresponding to love using the semantic counterpart of \-
abstraction. We will need the latter function for performing coalesced intersection
with the meaning of a direct object, e.g., Joe. The meaning of Joe is also to be
converted into a function of the appropriate sort, namely,

{{u,®): ® = {(U,I) € Fpq:I(Joe) = u}},

which corresponds to ‘Az(Joe = z)’. The coalesced intersection of these two
functions is

{(2,®):® = {(U, 1) € Faq: \/ (v,2) € I(love)} N {(U,I) € Fau: I(Joe) = z}}
velU

or
{(z,@):® = {(U,I) € Fae: \[((v,2) € I(love) A I(Joe) = 2)}}.
velU

As can be seen, the result is a function that is only defined for Joe, and yields
the set of model fragments in which someone loves Joe. To combine this mean-
ing with that of a subject’s, we have to take this set and perform A-abstraction
again. (Remember that the shift from functions to their co-domains and back is
simply a technical device to treat certain entities in the domain as distinguished.
Unlike in semantic theories where type theory has an explanatory status, here it

is insignificant whether we represent denotations with sets or functions that map
to them.)

28

References

Berman, S. 1987. ‘Situation-based semantics for adverbs of quantification’. In
J. Blevins and A. Vainikka, eds., University of Massachusetts Occasional Pa-
pers 12. University of Massachusetts, Amherst.

Bresnan, J. 1978. ‘A realistic transformational grammar’. In M. Halle, J. Bresnan
and G. Miller, eds., Linguistic Theory and Psychological Reality. MIT Press,
Cambridge MA.

Heim, I. 1990. ‘E-type pronouns and donkey anaphora’. Linguistics and Phﬂoso—
phy 13, 137-177.

Janssen, T.M.V. 1983. Foundations and Appbcat;ons of Montague Grammar.
Mathematisch Centrum, Amsterdam.

Kélmén, L. 1990. ‘Deferred Information: The Semantics of Commitment’. In
L. Kélmén and L. Pélos, eds., Papers from the Second Symposium on Logic
and Language. Akadémiai, Budapest, 125-157.

Kélmén, L. and G. Rédai. 1994. ‘Compositional interpretation of computer com-
mand languages’. Paper presented at the Fifth Symposium on Logic and
Language, Noszvaj, Hungary, August 1994; to appear in Working Papers in
Theoretical Linguistics, Theoretical Linguistics Programme, Budapest Uni-
versity (ELTE), and Research Institute for Linguistics, Budapest, 1995.

Keenan, E.L. 1974. ‘The Functional Principle: Generalizing the notion of ‘Subject-
of’. Papers from the Tenth Regional Meeting of the CLS, pp. 298-310.

Kratzer, A. 1986. ‘An investigation into the lumps of thought’. Linguistics and
Philosophy.

Montague, R. 1970. ‘Universal Grammar’. Theoria 36, 373-398. Reprinted in R.
Thomason, ed., Formal Philosophy: Selected Papers of Richard Montague.
Yale University Press, New Haven, 1974.

Partee, B.H. 1984. ‘Compositionality’. In F. Landman and F. Veltman, eds.,
Varieties of Formal Semantics. Foris, Dordrecht, pp. 281-311.

Quine, W.V.0. 1960. Word and Object. MIT Press, Cambridge MA.

Szabé, Z. 1995. Problems of Compositionality. Ph.D. diss., MIT, Cambridge MA.

