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0. Introduction

In current (dynamic) theories of semantics, such as Groenendijk and Stokhof’s
(1991) Dynamic Predicate Logic (DPL), anaphoric expressions are treated as
bound variables. The main drawback of this approach is that it relegates the
way in which anaphor/antecedent relations are determined to some external (and
notoriously unspecified) module. For example, consider:

(1) Joe has a cat. It is black.
‘Jz(cat(z) A owns(j,z)) A black(z)’

The DPL formula in the above translation is interpreted as if the variable = in
black(z) was bound by the existential quantifier in the first conjunct. However,
why z rather than any other variable appears in the translation of the second
sentence is outside the scope of the theory.

No doubt, anaphoric reference has certain aspects which, in all probability,
cannot be put in semantic terms. Those aspects may be governed by genuinely
formal (e.g., syntactic) properties of the utterances in which the anaphors appear,
and there is not much hope that we can explain them within semantics.! But the
fact that some properties of anaphoric binding fall outside the scope of semantics
does not justify a treatment in which anaphor/antecedent relations are determined
by mechanisms entirely independent from semantics, by pure magic, as it were. In
particular, an anaphor always requires that there be exactly one salient individual

-

! For example, the gender agreement between the anaphor and its antecedent
often has no semantic counterpart, because grammatical gender is a purely
formal feature in many languages. The other well-known case when ana-
phoric relations depend on formal factors is related to the distinction between
anaphoric vs. reflexive pronouns in languages like English:
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in the context that can serve as its antecedent, at least among the candidates not
excluded by formal factors (such as gender and syntactic structure). Since this is
a fact about the semantics of anaphors, it should be captured by semantics. On
the other hand, anaphors lexically carry some descriptive content which constrains
the range of their possible antecedents, and those constraints are also semantic.

In what follows, we will develop a dynamic theory of anaphors which could
account for both the uniqueness requirement and the descriptive content of ana-
phors, as an alternative to the bound-variable view. Our treatment is an attempt
to formally develop, in a dynamic framework, ideas on anaphoric binding that
were proposed by various researchers as early as Cooper (1979) and Evans (1980),
and which have been informally proposed in dynamic semantics by Kalman (1995)
and Groenendijk et al. (1995).

Given the fact that the view of information states as sets of assignment func-
tions in DPL is motivated by the bound-variable view of anaphors that we are
criticizing, we will have to develop a different concept of information states in the
first place (Section 1.1). If we adopt this new concept, we can store what entities
have been introduced in the discourse, without knowing what variables have been
used for introducing them. There is no reason why we should keep track of dis-
course referents by arbitrary names (i.e., variables in the domains of assignment
functions) if we do not want to use those names to refer to them later on. Then,

(2) Joe likes him.
*¢Joe likes himself’

(3) Joe reminded Peter of him.
*¢Joe reminded Peter of himself’

In these sentences, the anaphoric pronoun him may not be co-referential with
any other noun phrase in the sentence. The fact that co-reference has to be
expressed by a reflexive pronoun in these syntactic configurations probably
cannot be expressed or explained in semantic terms. Finally, the syntactic
and rhetorical structure of an utterance sometimes biasses anaphoric relations
without fully determining them:

(4) Whenever Joe meets Peter, he greets him.
(5) Joe didn’t recognize Peter, because he had shaved his beard.

The preferred reading of (4) is when the grammatical role of each anaphor
matches that of its antecedent. In (5), on the other hand, the best way
of ensuring the coherence of the discourse is to take he to be co-referential
with Peter rather than Joe, because this is the simplest way of establishing
the desired rhetorical relation between the two clauses. For details on this

mechanism see Polanyi (1988) and Prist (1992).
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in Section 1.2.1, we define a first-order language interpreted dynamically in which
quantification over the discourse universe can be expressed in an elegant way. This
is necessary because the uniqueness of the antecedents of anaphors must be sat-
isfied in the discourse universe rather than the entire model. After examining
certain logical properties of the resulting system (Section 1.2.2), we ‘partialize’
that language to account for presuppositions (Section 1.2.3). The reason for this
is that the requirements that anaphors impose on their antecedent are of a pre-
suppositional character. We also examine the most essential logical properties of
the system introduced. Finally, in Section 2, we explain the consequences of our
treatment for various phenomena related to anaphors, such as donkey sentences
and the interaction of anaphors with modal operators.

1. Dynamic Update Predicate Logic

Possible alternatives to the bound-variable approach to anaphors must treat ana-
phors as quantificational. Consider:

(1) Joe has a cat. It is black.

Under the quantificational view, the anaphoric pronoun it in the above piece of
discourse must be interpreted as the condensed form of a definite description such
as ‘the non-human individual’, which involves a quantifier (‘there is exactly one
non-human individual’) that is possibly presuppositional. We will call this type of
quantification anaphoric quantification.

The interesting fact about expressions of anaphoric quantification is that they
constitute unstable propositions in the sense of Veltman (1981). That is, for in-
stance, ‘there is exactly one non-human individual’ may be true in the context in
which (1) is uttered, but false in a subsequent context, in which more than one
non-human individual has been introduced. The only dynamic semantic theory in
which such unstable propositions exist is Veltman’s (1981, 1990) Update Seman-
tics. Update Semantics, however, uses a propositional logic, so it cannot express
quantification over individuals. The only possible source of instability in Veltman
(1990) is the possibility operator. Formulae of the form ‘(¢’ (read as ‘might ¢’,
and interpreted in an epistemic manner) may be true in an information state that
does not exclude the truth of ¢, but can be falsified by subsequent information.
We will introduce another type of unstable propositions, namely, those involving
anaphoric quantification. For example, the anaphoric version of the quantifier
‘there is exactly one’ quantifies over the domain of entities already introduced in
a context. Thus, it gives rise to non-upward-entailing quantification, which may
become false from true as we enlarge the universe of discourse.

The instability of anaphoric quantification will manifest itself in the properties
of the function that assigns a truth value to every formula and information state.
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For example, we want to say that ‘there is exactly one non-human individual’ is
true in an information state if and only if the existence of exactly one non-human
individual can be taken for granted in the given information state. Thus, a formula
may be true in an information state without being true in the actual world, even
if the information state is true to the world. On the other hand, if ‘there is exactly
one non-human individual’ is true in a truthful information state and, moreover, in
all its extensions as well (i.e., in the more informative information states that may
arise from it), then this proposition must indeed be true in the world. Obviously,
the meaning of an anaphor like it does not entail that the world contains just one
non-human individual.

The system that we will use in the following is designed to be the simplest
one that can express the above concepts (including Veltman’s (1990) concept of
‘updating’). It is called Dynamic Update Predicate Logic (DUPLO for short), to
express its close kinship to both Update Semantics and DPL. In the rest of this
section we first explain the concept of an information state in DUPLO. Then we
describe the semantics of DUPLO formulae, which are first-order formulae with a
possibility operator ‘¢’ similar to Veltman’s (1990) and a presupposition operator
‘/\’ similar to Beaver’s (1992).

1.1. Information States in DUPLO

As can be expected from the above, information states in DUPLO do not store
possible values of variables (assignments are parameters of the semantic-value
functions as in classical, static logic), but they do keep track of what entities
have been mentioned and what has been learnt about them. An information state
in DUPLO consists of possibilities each of which carries information about what
the world may be like. But possibilities are not complete descriptions of the world,
they are partial in the sense that they express that certain facts are known to be
true about some entities the existence of which is suggested by previous discourse,
but not every fact is known about them.?

The way in which we will represent possibilities, i.e., partial information about
the world, is the following. Each possibility contains a number of alternatives, some
of them more complete than the others, possibly with complete possible worlds
at one end of the scale. These alternatives will be called model fragments. A
model fragment is exactly like a (first-order) model, except that its universe may
be empty. It is like a subset of the universe of the model, plus an interpretation
function that is restricted to that universe.

2 In what follows, we will assume that the interpretation functions are first-
order, i.e., they just assign a set of n-tuples to each n-ary predicate constant.
Extending information states to higher-order interpretation functions would
raise no problem at all.
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(6) Definition: Model fragments
A model fragment f is an ordered pair (U, Zs) such that Uy, the universe
of f, is a set of individuals (taken from a countable set U/ containing all
individuals), and the interpretation function of f, 7y, which assigns a set
of n-tuples of individuals in 'P(sz}‘) to every n-ary predicate constant. We
will refer to the entire set of model fragments satisfying these constraints

as F.
We also need the concept of the informativity of model fragments:

(7) Definition: Informativity of model fragments
A model fragment f; = (Uy,,Zy,) is at least as informative as the model
fragment f, = (Uy,,Iy,) (written: fy C fo) iff
(l) u.fz Cc ufn and
(ii) for every predicate constant P, Zy,(P) C Iy, (P).

Every possibility p in an information state 7 is a set of model fragments. We
will talk about the core of p, which is the set of its least informative elements:

(8) Definition: Core of a possibility
If p C F is a possibility, then the core of p (written: C(p)) is

cp)={fepr NFCF=Ff =1}

f'ep

The universes of the core elements of a possibility represent potential discourse
universes. When updating an information state in such a way that a new in-
dividual is mentioned in the discourse, the cardinality of every core element of
every possibility will increase by one. We will refer to this process informally as
‘extending the discourse universe’.

We will also need the set of model fragments in a possibility p that are at
least as informative as a certain model fragment f € p:

(9) Definition: The cloak of a model fragment
If p is a possibility in an information state, and f € p is a model fragment,
then the cloak of f in p (written |,f) is

of =aet {f €p:f' C f}.

Finally, we will use the concept of the set of the least informative extensions
of a possibility p satisfying ®:

MAX i cp(®) =qet {p' Cp: 2 & /\ (B[p'/p") &p' Cp") = p" = p)
P"Cp
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where ®[p’/p"] is the same as ®, with the free occurrences of p' substituted for by
plf.

The possibilities in an information state need not be compatible with each
other; the model fragments within a possibility need not, either. That is, they need
not be fragments of the same model, so to say. The most informative elements of a
possibility can be complete models, namely, those that could be models of the real
world given the information represented by the information state. This need not
originate from the discourse itself; certain possible worlds can be excluded already
at the outset, in the beginning of a conversation, so that the single possibility that
we start the conversation with need not contain absolutely all possible models.
For example, it may be the case that ‘all birds fly’ is true in all most informative
model fragments in the initial possibility, although no bird whatsoever is present
in the universes of the core elements. We will not dwell upon the question what
type of information may be present in this form, nor how it gets there. We simply
will allow any set of possibilities to act as an information state:

(10) Definition: Information states
The set II of information states is P(P(F)).

1.2. The Semantics of DUPLO

The language of DUPLO is a first-order language with equality, a modal operator
‘{’, and a presupposition operator ‘A’.*> We will proceed in two steps for the sake
of expository convenience. We will first define a version of DUPLO with total
functions (without the A operator), then we will introduce the A operator and,
at the same time, partial semantic-value functions.

1.2.1. The Total Version of DUPLO

We define two important concepts in the following. The first concept is the truth
of a formula in an information state (under an assignment). The truth function
is a three-valued function, because we want to make a distinction between ‘known
to be true’ (truth value 1), ‘known to be false’ (truth value 0) and ‘not known to
be either true or false’ (truth value ). The second central concept is the result of
updating an information state with (the information content of) a formula (under
an assignment). The truth function and the update function are defined using
simultaneous recursion.

® For the sake of simplicity, we will not introduce functors into the language.
In particular, we exclude individual constants. We decided to proceed in this
way to avoid complications that have no relevance for the topic of this paper.
We believe the system to be proposed could easily be enriched with functors.



1.2.1. The Total Version of DUPLO 7

(11) Definition: DUPLO’s language (total version)
The total version of DUPLQ’s language is an ordered quadruple

L' =4¢t (LC, Var, Con, Form).

The set LC of logical constants, the set Var of individual variables and the
set Con of non-logical constants are pairwise disjunct.

LC =def {3, —'._, 0; >y (1 )}1
Var =get {Zi}i<w;
Con =def U Con(n);

1<n<w

Con™ =4ut {P{™}icw-
The set Form of formulae is defined as the smallest set satisfying the clauses
of the definitions of atomic formulae and of the truth-value function below.

We will use the notation | - |, for the first-order semantic-value function for
the atomic formulae of DUPLO. This function yields a classical truth value (1 or
0) for every formula and model fragment.

(12) Definition: Atomic formulae and their first-order truth values
If g is an assignment function and f is a model fragment, then the first-order
semantic-value function | - | g is defined in a standard way, as follows:

() If zy,...,z, € Var and P € Con'™, then ‘P(zy,...,z,)’ € Form is an
atomic formula of DUPLO.

]. if LL)yeony n GI P’
P(@1y- - Za)ly =at {0 otl(ligwlile. SR e

(i) If 21,z € Var, then ‘(z; = 23)’ € Form is an atomic formula of DU-
PLO. 1 i g(zr) )
st F ng\r1) = g\(22);
(21 = 22)l5 =aer {0 otherwise.

The truth value of a formula ¢ in an information state 7 (under an assignment
g) will be written as [p](7) (the partial version of this function will be [-];). The
result of updating an information state = with a formula ¢ (under an assignment
g) is written as [p]j(7) (the partial version being []4(7)). We will now define
both the total truth function and the total update function. The definition of the
truth function also contains the definition of non-atomic formulae of DUPLO. We
will rely on the concept of modified assignments, defined in the usual way:
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(13) Definition: Modified assignment

If g is an assignment function in Va.ru’ z € Var and u € U, then g[z:u],
the assignment modified in z for u, is defined as follows:

u fy=ux;
g(y) otherwise

sloslw) =ae {

for every y € Var.

(14) Definition: Total truth function
The truth value of a formula ¢ in an information state 7 under the as-
signment g in the total version of DUPLO, written ‘[p]}(7)’, is defined as
follows:

i. If ¢ is an atomic formula, then

if /\pEﬂ' AfeP [€9|_f; =1
if /\pex A_pr |‘:0|§re = 0;

otherwise.

[P]g(7) =aet

= O =

That is, for an atomic formula to be true (false) in an information state, it has
to be true (false) in every model fragment of every possibility. The truth and
falsity of atomic formulae are stable because, as we will see later on, updating an
information state can at most eliminate model fragments (see (20)).

ii. If z € Var and ¢ € Form, then ‘Jz¢’ € Form.

if Ape':r /\_fGC(p) Vueu,. [‘P];[x;u]({lpf}) =1
[a:rtp];(ﬂ') “def 0 if Apesr AfEC(p) AuEH; [(p]’y[xu]({lpf}) = 0;

% otherwise.

ek

For an existential formula of the form Jz¢ to be true in an information state, each
core element of each possibility must contain at least one individual for which the
body (¢) is true in the cloak of the core element. On the other hand, we can only
take it for granted that it is false if no core element of any possibility contains such
individuals. There is uncertainty in the remaining cases. An existential formula is
T-unstable (it may become false from true) just in case its body is; it is F-unstable
(it may become true from false) under normal circumstances, because extending
the discourse universe may introduce entities for which ¢ holds.

iii. If ¢ € Form, then ‘~¢’ € Form.

[~lg(7) =det 1 =[]y ().
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This is trivial. Note that - is T-unstable just in case ¢ is F-unstable, and it is
F-unstable just in case ¢ is T-unstable.

iv. If 9,9 € Form, then ‘(¢ A %)’ € Form.

1 if Voyen(lply(n') = 1 & [y (7") = 7);
[(0 A)]y(7) =aet § O if [plg(m) =0V [$g(7) = 0;
3 otherwise.
As can be seen, the truth and the falsity of conjunction are defined in an asym-
metric way. The truth of a conjunction is dynamic: If the first conjunct introduces
some entity, then the second conjunct may pick it up. On the other hand, if the
first conjunct is T-unstable, then it need not be true in 7 provided the second
conjunct falsifies it. Take, e.g., $@ A —¢p: its truth in 7 only requires for - to
hold in 7. So the intuition behind this definition is that a formula must be true
in an information state that could have been produced by updating another infor-
mation state with it. On the other hand, our impression is that defining falsity in
a dynamic way is both technically impossible and unnecessary.

v. If 9,9 € Form, then ‘(¢ — 9)’ € Form.
[(p = ¥)g(m) =aet (], ([l5(7)).

The question arises why we need a separate connective for material implication
instead of using the standard definition ‘~(¢ A —9)’. As we have seen, ‘[—(¢ A
—)],(m) = 1’ expresses that either ¢ is false or ¢ is true in 7. ‘[p — ¥]y(7) = 17,
on the other hand, means that neither ~¢ nor 1 need to be true in 7, but updating
m with ¢ yields an information state in which 4 is true. This cannot be expressed
using the other connectives, but we may need it for translating natural-language
sentences which express a conditional relation between two propositions the truth
values of which need not be known, as we will see later on.

vi. If ¢ € Form, then ‘¢¢’ € Form.

if /\,,e«!so]’ ({r}) # @
if /\,,e,,iso]g({p}) =

otherwise.

[Qely(T) =det

- O =

This is almost like the usual interpretation of {¢ in Update Semantics, except
that we stipulate that it must be possible to update every possibility separately
(‘distributively’) with ¢ in order for {¢ to be true.

The update function is defined in such a way that updating = with ¢ yields
an information state that is minimally more informative than 7 and makes ¢ true.
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(15) Total update function
If 7 is an information state, ¢ is a formula and ¢ is an assignment function,
then the total version of the result of updating m with ¢ under g, written
‘[¢l;(7)’, is defined as

[ely(m) =aer |J MAXpc,(lely({p'}) = 1).

pE™

It is easy to see that ¢ is indeed true in [¢]}(7). The reason is that, since every
clause in the truth function is defined possibility by possibility,

el (1) = [l (m2) = [l (m U ma) = [} ()

for any 7y, 7, and ¢. On the other hand, for the same reason, [¢]}(7) is indeed
the least informative extension of 7 which has this property.

Let us now review each type of formulae and elaborate on their update effects.

(16) Facts about the total update function

i. If ¢ is an atomic formula, then

[ely () = [ J{{f € v lel] = 1}).

pE™

If ¢ is an atomic formula, then the least informative extension of 7 in which ¢
is true can be produced by leaving out every model fragment from every possibility

in which ¢ is false.

el =i er VUECFE V olpa{laf) =1).

pPET flep ueu,,

By the above argument, this is indeed the least informative extension of m which
makes Jz¢ true. When updating an information state with Jzp, we guarantee
that every core element of every possibility will contain at least one individual
that satisfies ¢, but not more than absolutely necessary. If the input information
state did not contain individuals satisfying ¢, then every possible value of z will be
present in some fragment of every possibility in the output state. As a result, no
new possibilities arise, but many new core elements do which only differ in what
individual plays the role of ‘z’, so to say.
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' [~¢l(m) = | MAX,c, (Il ({p'}) = 0).
pPET

This is just the instantiation of the definition in (15) for negative formulae.

iv.

[ A (7)) = [¥1, (Ll (m))-

As usual in dynamic semantics, conjunction corresponds to function composition.
It is easy to prove that this is indeed the least informative extension of 7 in which
‘o A’ is true.

V.

[ — ¥1y(r) = |J MAX (][], ({p'})) = 1)

pE™

Just like disjunction (the negation of a conjunction), conditionals are also able to
multiply possibilities when we update an information state with them.

| (0ol (m) = {p € = [ol,({p}) # 0}.

Unlike in Update Semantics, modal formulae do have an updating effect. As we
will see shortly, this is just a technical difference.

The concept of entailment in DUPLO could be defined in the usual way:

@1+ on E ¥ & [Blg(ler Ao Aealy(m)) =1

for all # and ¢g. This would probably do the job, but we can provide a stronger
definition, and one that is closer to the classical concept of entailment:

(17) Definition: Entailment in DUPLO
A sequence of formulae ¢, ..., ¢, entails a formula ¢ (¢;,...,¢, E ¥) iff,
for all information states 7 and assignments g,

[$]5(7) = [p1 A« A paly(m).

Note that, in DUPLO, entailment is trivially reflexive. In Update Semantics, a
formula like {¢ A ~p does not entail itself. In that theory, ¢¢ A ¢ would entail
itself if and only if, for any 7, the result updating = with {$¢p A —¢ supported
Op A g (i.e., in our terminology, if {p A ~¢ was true in it). But $¢ A —p has
the same update effect as —~¢, and updating 7 with —¢ yields an information state
that does not support $¢. In DUPLO, however, we have the following fact:
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(18) Fact: Entailment is reflexive
¢ | ¢ for every .

Moreover, entailment is also trivially transitive in DUPLO. In first-order ver-
sions of Update Semantics, a formula like 3z(P(z)) entails Jy(P(y)), and the latter
entails P(y), but 3z(P(z)) does not entail P(y). DUPLO does not have this rather

inconvenient feature.

(19) Fact: Entailment is transitive
pEYE&EYEXx=pEX

1.2.2. Some Properties of DUPLO

In what follows, we examine certain general properties of DUPLO. In particular,
we are interested in those features that distinguish it from other dynamic theories.
However, we defer the discussion of differences related to anaphors to Section 2.

The first property that is usually relevant in the assessment of a dynamic
semantic theory is eliminativity:

(20) Fact: Eliminativity
Npetetym) VprerP S P

That is, the update function always yields an information state that is at least
as informative as its input. Some version of eliminativity is usually satisfied by
dynamic theories, unless they set out to account for cases of belief revision.

We have mentioned earlier that the truth and falsity of certain DUPLO for-
mulae are not stable:

(21) Fact: Instability
[plg(m) = 1& [¢]y(r) = 7'  [g]y(r") = 1;
[plg(7) = 0 & [$]y(m) = =" # [p]y(n') = 0.

That is, the truth and falsity of a formula ¢ are not preserved under arbitrary
updates. For example, $VzP(z) may be true in 7 (namely, if every possibility in
7 contains sub-possibilities in which Yz P(z) is true). Updating 7 with -VzP(z)
may yield a non-empty information state 7'. Obviously, OVzP(z) is not true in
the resulting information state. On the other hand, because of the fact mentioned
in (14iii), - is F-unstable.

Since 3z is F-unstable, universal quantification defined in the usual way will
come out as T-unstable in DUPLO:
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(22) Fact: Truth of a universal formula

1. [Vzpli(m)=1
[=3z-p]y(7r) =1 [1, by def.]
[Fz=¢lg(m) =0 (2, (14iii)]
MNoer Nsecp) Auer, [00)ga ({1 f1) =0 [3, (14ii)]
Noex Nsecry Nuer, [0l ({Lpf) =1 [4, (14iii)]

o B

As can be seen, the truth of Yz involves universal quantification over individuals
already introduced. So introducing new referents may alter its truth value.

On the other hand, the F-instability of Vz¢ depends on the properties of ¢:

(23) Fact: Falsity of a universal formula

1. [Vze]i(m)=0

2. [-3z-¢],(m) =0 [1, by def.]
3. [Fz-plp(m) =1 (2, (14iii)]
4. /\pe,r Afec(p) Vueu, [ﬂﬁP];[x;u]({lpf}) =1 (83, (14ii)]
5.

Aver Nseep) Vuew, [Plga({Lpf) =0 [4, (14iii)]

If VzP(z) is false in an information state, then it will remain false forever, be-
cause introducing new individuals may not change the truth of P for the referents
introduced earlier. However, if Vz3lyR(z,y) was false in an information state
for 3z-3yR(z,y) is true in it, then introducing a new individual can make the
universal formula true.

In contradistinction to DPL and similar theories, universal formulae can also
have updating effects in DUPLO.

(24) Fact: Update of universal formulae

L. [Vzely(n)
[~32—](7) [1, by def]
Uper MAXpcp([Bz¢l5({p'}) = 0) [2, (16iii)]
Upeﬂ' MAXP'QP(/\fe(:(pf) Aueu, ["‘P];[z:u]({lp'f}) =0) [3, (14ii)]
UpE?r MAXP'_C_P(A_fEC(p') Aueu, [@];[z:u]({lp'f}) =1)  [4, (14iii)]

o o

This means that universal formulae may introduce new individuals into the dis-
course universe. In particular, the updating effect of a sentence like

(25) Ewvery farmer has a donkey

consists in minimally trimming the input information state so that every farmer
in the output state has a donkey.
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(26) Fact: Update of Vz(F(z) — JyD(z,y))
1. [Va(F(z) - 3yD(z,y))ly()
2. Upe:r MA‘XP'QP(AJ‘GC(}J') /\ueu,
[F(2) = 3D, ) (D =1)  [1, (28]
3. UpG:r MAXP'Q;:(/\ fec(p') /\ueuf
[ByD(z, )]} .y ([F @)z ({1 F}) = 1) [4, (14v))]

That is, the resulting information state will contain as many donkeys as there are
individuals in the information state that are known to be farmers. Furthermore,
if an individual already present in the discourse universe turns out to be a farmer
later on, his donkey will be introduced automatically. (The restriction to individ-
uals already introduced stems from the definition of V.) On the other hand, if we
defined material implication in terms of negation and conjunction, we would get
a different result.

(27) Fact: Update of Vz—(F(z) A =3yD(z, y))
L. [Va=(F(z) A -3yD(z,y))],(r)
2. UpE'.rr MAXP'QP(/\fec(pr) /\ueu,
[~(F(z) A 23yD(z, y))ype({Lpr f}) = 1) [1, (24)]
3. Upeﬂ' MAXP'QP(Afec(p') Aueu,
[F(2)), (1L ) = 0 V
[FyD(z, y)];[z:u]({lp'f}) =1) (2, (14iii)s (14iv)]

This interpretation has not much to do with a conditional. Rather, it says ‘every-
one (in the discourse universe) either is definitely not a farmer or positively has
a donkey’. This is the argument that we mentioned when we defined a separate
connective for material implication.

Turning back to the translation in (26), the minimal modification of the in-
formation state that we calculated there involves introducing a donkey for every
farmer in the discourse universe if they all own donkeys. (Otherwise, the empty
information state is returned.) Updating with (25) cannot introduce new farmers,
however. If all farmers in the input information state have donkeys, then intro-
ducing new ones would be a non-minimal modification; if some do not, then the
empty information would be returned, anyway.

The fact that most dynamic semantic theories treat sentences like (25) as
‘externally static’ (i.e., not giving rise to new discourse referents) stems from the
observation that such a sentence cannot be continued with it (as referring to a
donkey). We believe this is a non sequitur: a sentence like (25) is pragmatically
inadequate when talking about just one farmer (with just one donkey), so no single
donkey is available in its output information state. Several donkeys must be there,
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which makes it inappropriate, but they is fine (except that it is ambiguous between
‘the farmers’ and ‘the donkeys’).

Another important concept of dynamic theories of semantics is distributiv-
ity. A formula is said distributive if and only if updating an information state
with it consists in updating each possibility separately. A language interpreted
dynamically is said distributive if all of its formulae are distributive. As shown by
Groenendijk and Stokhof (1990), a logic that is both distributive and eliminative
is not really dynamic. But their result does not apply to our theory, because DU-
PLO updates do not ‘distribute’ down to the model fragments (except for atomic
formulae).

(28) Fact: Distributivity in DUPLO
[ls(7) = Upenlels({PD)-

That is, the process of updating an information state is distributive in the sense
that we get the same result if we update the singleton information states containing
each possibility one by one, then take the union of the results.

As we mentioned earlier, the distributivity of the possibility operator is harm-
less in DUPLO. In particular, the argument in Groenendijk et al. (1994) why
possibility should be non-distributive does not apply to our treatment:

(29) If someone is hiding in the closet, then he might have done it.

The interpretation that both Groenendijk et al. (1994) and DUPLO predict for
this sentence and the DUPLO definitions yield is ‘there must be at least one
individual among those who might be hiding in the closet who might have done
it’. As for the DUPLO treatment of (29), updating an information state with its
if -clause yields one in which every possibility will contain everyone who may be
hiding in the closet, so looking at possibilities one by one to assess the truth of
the then-clause yields the correct result.

On the other hand, DUPLQ’s interpretation of the necessity operator is quite
different from that of Update Semantics. In Update Semantics, a formula like [J¢
(i.e., =) may have no updating effect (it yields either the input information
state, if ¢ is true in =, or else the empty information state). In DUPLO, on the
other hand, updating = with [J¢ yields an extension of 7 in which ¢ is true in a
stable way:

(30) Fact: Update effect of [
L. [Oely(7)

2. [0-ely(m) [1, by de]
3. Uper MAX,g,([0-¢ly({p') =0) (2, (16ii)
4. Uper MAXo(el,((Ph) =0) (3, (14vi)
5.

Uper MAXpicp(Apucplely({P"}) =1)  [4, (15)]
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The asymmetry between possibility and necessity is not unrealistic. Consider
the following pieces of discourse:

(31) A man is walking in the park. Maybe he wears a blue T-shart.
(32) A man is walking in the park. It is known that he wears a blue T-shart.

Assuming that all our model fragments are fragments of a model in which two men
exist altogether, exactly one of which wears a blue T-shirt, the piece of discourse
in (31) says nothing about who is walking in the park (if we start from a minimally
informative information state).* It could be either man, so both possibilities will
be present in the output information state. The piece of discourse in (32), on the
other hand, seems to exclude the possibility that the man walking in the park
is not wearing a blue T-shirt. Under Update Semantics’ definition of negation,
the piece of discourse in (32) should be a contradiction. Since we start from a
minimally informative information state, nothing is known about the man after
processing a first sentence, and the second sentence would claim that something is
known about him. Under DUPLO’s view, however, if communicating ‘[J¢’ is to
communicate ‘it is known that ¢ is true in the world’, so it makes sense to consider
it synonymous with ¢ (including its dynamic effects) except when ¢ is T-unstable.

The stabilizing effect of the necessity operator ‘]’ can be put to use in the
translation of natural-language sentences. For example, in most cases, overt nega-
tion is stable in natural languages, although the negation that we need in ana-
phoric quantification and universal quantification in general is not. Under the
above treatment, we can assume that a natural language sentence of the form
It is not the case that ¢ is always translated as ‘[]—¢’, which yields the desired
effect. In this way, we do not have to introduce a separate, ‘stabilizing’ negation
(together with a ‘stabilizing’ counterpart of universal quantification, and so on).
Similarly, a natural-language sentence of the form There is ezactly one x such that
¢ can be translated as ‘[J3!z¢’, because it is normally understood in a stable way,
unlike anaphoric quantification. By the same token, if Every z is such that ¢ is
not understood as quantifying over the discourse universe, but is intended as an
‘eternal truth’, its translation must be prefixed with ‘[]’.

Note that double negation can be eliminated in DUPLO. As a consequence,
double negation does not make a formula externally static. For example, we predict
the following piece of discourse to be acceptable under normal circumstances:

(33) It is not the case that Joe does not have a car. I saw it parked nezt to the
entrance. '

4 Here we assume that our information about men in the model and who wears
a blue T-shirt does not originate from previous discourse information.
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It is not entirely clear whether this is a desirable prediction. People’s judgments
diverge on this piece of discourse, so it probably cannot serve as a key example in
the assessment of theories of anaphors.

1.2.3. Partial DUPLO

For the sake of simplicity, we will not be very precise in the definition of the partial
version of DUPLO. The language £ of partial DUPLO is the same as L' except
that the set of logical constants contains an additional symbol, the presupposition
operator ‘A’, and if ¢ € Form, then ‘A’ € Form. These formulae are the
ultimate sources of presupposition, i.e., undefinedness of semantic values. We use
the symbol ‘*’ for an undefined value rather than a special value. The partial
truth function will be written as [-],, and the partial update function is [-],. The
truth values of A are as follows:

(14) vii. .
[Agly(r) =aot {3 E1els(m) £1;

1 otherwise.

As for the other clauses of the truth function, we will just specify when its
value is undefined. When it does assign a truth value, the value is always calculated
in the same way as that of the total version, except that we have to use the
partial versions of the truth and the update functions in the calculations. The
definition below attempts to express standard assumptions about presupposition
and presupposition projection, which we will not dwell upon here, as they are
tangential to our central concern.

(34) Definition: Partial truth function

i. The truth value of an atomic formula is always defined. Atomic formulae
have no presuppositions.

| [Fzply(7) = * Saet V /\ /\ [‘F’]y{z:u]({P}) m,

PET fEC(p) uEU;

| sl i wwiiale)

| o APlo(m) = * Saet \ ([Ely(n") = 7 = [ply(n") = %).

w'€ll
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[p = ¥lg(m) = * Saet [elo(m) = *V ([elg(7) # * & [$l([els(7)) = *).

vi.
[Oplg(m) = * aet [¢lg(m) = *.

The partial update function is undefined for a formula ¢ in an information
state 7 if the least informative extension of 7 in which ¢ is true cannot be calcu-
lated because of presupposition failure. In most cases, this means that the truth
value of ¢ must be defined in 7 in order for [¢]s(m) to be defined. There are
only two exceptions from this rule, namely, conjunction and material implication,
because their truth in the extensions of 7 depends on 7 indirectly: an intermediate
information state is involved. But, in the case of material implication, the unde-
finedness of the update function coincides with that of the truth function as in the
case of most other types of formula, because determining its truth involves updat-
ing the information state with the antecedent. Therefore, we have the following

definition:
(35) Definition: Partial update function

If 7 is an information state, ¢ is a formula and g is an assignment function,
then the result of updating m with ¢ under g, written ‘[p]4(7)’, is defined
as follows.

(i) If ¢ is of the form ¢ A £, then

[elg(7) = * Saer [Plg(m) = = V ([$1y(7) # * & [€]4([¥]4(7)) = *);

(i1) Otherwise,
[elg(m) = * ©aes [plg(7) = *;

(iii) If [¢]g(7) # *, then

[elo(m) =aet |J MAXpcp((@lo({p'}) = 1)

PET

All the facts about the total version of DUPLO are valid in the partial version,
except that the proviso ‘when defined’ is necessary in many cases (such as the

definition of entailment). This does not affect the important logical properties of
DUPLO, though.
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2. Anaphors in DUPLO

Obviously, we have introduced both unstable quantification and presuppositions
in order to deal with anaphors (although they may be put to use for different
purposes as well). In terms of what we have anticipated in the earlier sections, the
translation of a sentence like (1) will be as follows:

(1") Joe has a cat. It is black.
‘Jz(cat(z) A owns(j, z)) A
A(I'y(nonhuman(y))) A Vz(nonhuman(z) — black(z))’

It is easy to see that the translation of the second sentence can be produced in a
compositional manner. In general, if the descriptive content of an anaphor is A,
then its translation is

(36) Translation of anaphors
AP(A(3lz(A(z))) A Vy(A(y) = P(y)))-°

Accordingly, we will use ‘he”, ‘it"’ etc. as the translations of anaphors with the
descriptive contents ‘male’, ‘non-human’ etc. below.

This treatment accounts for one of the most obvious characteristics of ana-
phors, namely that, in most constructs, the antecedent can be present in the initial
information state even if the anaphor is deeply embedded:

(37) a. Mary does not know him.
b. Mary would know it.
c. If she was there, she would know it.

In (37a), the anaphor is within a negative predicate, in (37b), within a modal
predicate, and in (37c), in the consequent of a (counterfactual) conditional. Yet
in all three cases the antecedent is required to be present in the initial information
state. The presuppositional treatment of anaphors ensures that the anaphoric
quantifier will have ‘wide scope’ in the translations of the sentences in (37) without
relying on wildly non-compositional devices.

5 As a matter of course, this translation does not apply to so-called ‘lazy pro-
nouns’, which do not stand for their antecedents but an analogous entity, as
in

The man who gave his paycheck to his wife was wiser than the one
who gave it to his mistress.
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On the other hand, the antecedent does not have to be present in the initial
information state, so we cannot say that the anaphoric quantifier always has a
‘wide scope’:

(38) If she had a car, she would lend it to me.

In this sentence, the antecedent of the anaphoric pronoun it is within the condi-
tional; it is difficult to imagine a compositional mechanism that would assign ‘wide
scope’ to the anaphoric quantifier in (37c), but ‘narrow scope’ to that in (38). The
presuppositional treatment of anaphoric quantification, on the other hand, deals
with both ‘wide-scope’ and ‘narrow-scope’ cases. In terms of the definedness con-
ditions of the update function, the presuppositions of formulae must be satisfied in
the initial information state as a rule. Formulae of the forms ‘¢ A%’ and ‘¢ — ¥’
are exceptional: the presuppositions of 1 must be satisfied by [¢],(7). That is,
the presuppositions of the second member of a conjunction or a conditional are to
be satisfied in an information state that their first member yields. This is essen-
tially the same behaviour of ‘presupposition projection’ that has been proposed by
Karttunen (1973, 1974) and Karttunen and Peters (1979), except for some marked
cases, which are to be dealt with in special ways (cf. Kalman (1994)).

Just the same as the choice of the variables corresponding to anaphors 1s done
by magic in DPL, we also need magic for those conditions in the translations of
anaphors that result from factors external to semantics. For example, consider the
following translation: '

(2) Joe likes him.
‘A(3'z(male(z) A z # 7)) A Vy((male(z) A z # j) — likes(j, z))’

Here it is not clear how the condition ‘z # j’ gets into the translation of him.
It is allegedly a condition that can be produced by syntactic information (since -
Joe c-commands him, they cannot be co-referential). If we did not include this
condition on the antecedent, the sentence could only mean ‘Joe likes himself’.

Obviously, the properties of dynamic logics such as DPL which are related to
the bound-variable view of anaphors do not hold for DUPLO. In particular, the
so-called donkey equivalences of DPL,

3o(p) A ¥ = Ja(p A );
(32(¢)) = ¥ = Val(p = ¥)

do not hold in DUPLO. (‘¢ = v’ means that both [-], and [-], yield identical
values for ¢ and 1.) We have argued against the first of these in the previous
sections. We will show now that the second equivalence is also not necessary for
dealing with the relevant facts.

The use of anaphors in conditional sentences is an age-long problem. Consider:
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(39) If a farmer owns a donkey, he beats it.

As can be seen, anaphors in the consequent of a conditional may refer to entities
introduced in the antecedent. Moreover, these anaphors are in the singular (at
least in English), which suggests that the conditional is a case-by-case statement
about the entities that the antecedent introduces. According to a proposal in Heim
(1990), this phenomenon may be due to the fact that conditional sentences involve
a (usually implicit) quantification over ‘cases’ or ‘situations’, which are selected
by the antecedent. For example, (39) should be interpreted as ‘in each situation
in which a farmer owns a donkey, that farmer beats that donkey’.

The machinery of DUPLO as introduced above offers a natural way of cap-
turing the concept of ‘cases’ or ‘situations’. Each ‘case’ or ‘situation’ can be seen
as a possibility in the information state. Updating an information state with the
antecedent of a conditional sentence yields just those ‘minimal situations’ that
Heim (1990) mentions.®

As for the anaphors in the consequent of (39), the possibilities that updating
with the antecedent yields are the ‘biggest’ (i.e., least informative) among those
in which ‘a farmer owns a donkey’. Therefore, their discourse universes (i.e., the
universes of their core elements) will be minimally larger than those in the input
information state, i.e., they will contain just one farmer and one donkey.” That is
why the translations that we proposed for he and it are appropriate in this case:

(39') If a farmer owns a donkey, he beats 1t.
Jz(F(z) A 3yD(z,y)) — beats(he',it")

(40) Fact: Truth of (39')
1. [3z(F(z) A JyD(z,y)) — beats(he’,it")]y(7) =1
2. [beats(he,it")),([3z(F(z) A JyD(z,y))]y(7)) =1 [1, (14v)]
3. [beats(he, it’)]g(UpG‘rr MAX,y Qp(/\fGC(p') Vn,u'eu,
[F(x) A D(x1y)]y[x:u][y:u’]({lp'f}) = 1)) =1 [2, (15)]

6 As a matter of fact, it yields the minimal extensions of the input state sat-
isfying the antecedent. We are aware of the fact that not every conditional
sentence is to be interpreted in this way. For example, the antecedent of a
counterfactual selects minimal situations that are not even compatible with
the input information state. We believe that even normal conditional sen-
tences could be treated in this way. That is, in that case, the antecedent
could yield ‘sub-situations’ of the input situations, i.e., minimal modifications
possibly different from its extensions.

Unless the input information state already contains farmers and donkeys; see
below.
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Since the possibilities selected by the antecedent will contain all possible
farmer/donkey pairs, we get the interpretation that DPL yields if we translate
sentences like (39) as above. The translation of (39) is true if and only if, in every
possibility that arises from the input state by introducing a farmer and a donkey
he owns, the farmer will beat the donkey. Whether all conditional sentences in
natural language are to be translated in this way is arguable. In fact, the uniform
‘double-universal’ readings that DPL’s ‘donkey equivalences’ predict have been
largely questioned in the literature. Maybe the ‘double-universal’ reading that
the above translation yields is peculiar for such atemporal sentences, and other
universal sentences have different translations.

There is an interesting problem that this analysis raises. If the initial informa-
tion state in which (39) is uttered already contains more than one farmer and/or
donkey, then the biggest sub-possibilites that satisfy ‘a farmer owns a donkey’ also
contain several of them. In that case, we predict he and/or it in the antecedent
to be infelicitous. This prediction may sound odd, but — at least in principle —
the anaphoric pronouns he and/or it cannot in fact be used felicitously if there
are several possible antecedents in the context. The peculiarity of this prediction
in the case of (39) may be due to rhetorical reasons. But this problem would
not even arise if we adopted the strategy described in footnote 6. This possibility
opens directions for further research.
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